Nevers, D. R. ; Williamson, C. B. ; Savitzky, B. H. ; Hadar, I. ; Banin, U. ; Kourkoutis, L. F. ; Hanrath, T. ; Robinson, R. D. .
Mesophase Formation Stabilizes High-Purity Magic-Sized Clusters.
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2018,
140, 3652-3662.
AbstractMagic-sized clusters (MSCs) are renowned for their identical size and closed-shell stability that inhibit conventional nanoparticle (NP) growth processes. Though MSCs have been of increasing interest, understanding the reaction pathways toward their nucleation and stabilization is an outstanding issue. In this work, we demonstrate that high concentration synthesis (1000 mM) promotes a well-defined reaction pathway to form high-purity MSCs (>99.9%). The MSCs are resistant to typical growth and dissolution processes. On the basis of insights from in situ X-ray scattering analysis, we attribute this stability to the accompanying production of a large (>100 nm grain size), hexagonal organic–inorganic mesophase that arrests growth of the MSCs and prevents NP growth. At intermediate concentrations (500 mM), the MSC mesophase forms, but is unstable, resulting in NP growth at the expense of the assemblies. These results provide an alternate explanation for the high stability of MSCs. Whereas the conventional mantra has been that the stability of MSCs derives from the precise arrangement of the inorganic structures (i.e., closed-shell atomic packing), we demonstrate that anisotropic clusters can also be stabilized by self-forming fibrous mesophase assemblies. At lower concentration (<200 mM or >16 acid-to-metal), MSCs are further destabilized and NPs formation dominates that of MSCs. Overall, the high concentration approach intensifies and showcases inherent concentration-dependent surfactant phase behavior that is not accessible in conventional (i.e., dilute) conditions. This work provides not only a robust method to synthesize, stabilize, and study identical MSC products but also uncovers an underappreciated stabilizing interaction between surfactants and clusters.
Su, X. ; Hao, S. ; Bailey, T. P. ; Wang, S. ; Hadar, I. ; Tan, G. ; Song, T. - B. ; Zhang, Q. ; Uher, C. ; Wolverton, C. ; et al. Weak Electron Phonon Coupling And Deep Level Impurity For High Thermoelectric Performance Pb1-XGaXTe.
ADVANCED ENERGY MATERIALS 2018,
8.
AbstractHigh ZT of 1.34 at 766 K and a record high average ZT above 1 in the temperature range of 300-864 K are attained in n-type PbTe by engineering the temperature-dependent carrier concentration and weakening electron–phonon coupling upon Ga doping. The experimental studies and first principles band structure calculations show that doping with Ga introduces a shallow level impurity contributing extrinsic carriers and imparts a deeper impurity level that ionizes at higher temperatures. This adjusts the carrier concentration closer to the temperature-dependent optimum and thus maximizes the power factor in a wide temperature range. The maximum power factor of 35 µW cm−1 K−2 is achieved for the Pb0.98Ga0.02Te compound, and is maintained over 20 µWcm−1 K−2 from 300 to 767 K. Band structure calculations and X-ray photoelectron spectroscopy corroborate the amphoteric role of Ga in PbTe as the origin of shallow and deep levels. Additionally, Ga doping weakens the electron–phonon coupling, leading to high carrier mobilities in excess of 1200 cm2 V−1 s−1. Enhanced point defect phonon scattering yields a reduced lattice thermal conductivity. This work provides a new avenue, beyond the conventional shallow level doping, for further improving the average ZT in thermoelectric materials.